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Quantizer Design %7 P Eim

inghua U

« What is Model Quantization?

« Quantization maps the 32-bit floating-point numbers into low-bit fixed-point
numbers, or a mapping from continues real numbers to discrete integers.

« Applying quantization to model parameters (e.g. weights & bias) can save memory
footprint. For example, 8-bit quantization can save 4x memory space.

« Applying quantization to both parameters and activations can accelerate the inference
by replacing the floating-point multi-adds operations to low-power fixed-point ones.
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« What can Quantization do?

Relative Energy Cost Relative Area Cost
Operation: Energy(pJ): : Area(p.mz): 1
8b Add 0.03 36
103 WEE Titan RTX 16b Add 0.05 67 |
_ s A100 32b Add 0.1 137 |
§ 16b FP Add 0.4 1360
E 32b FP Add 0.9 4184
g 107 8b Mult 0.2 282
© 32b Mult 3.1 3495
9 16b FP Mult 11 1640
© 32b FP Mult 37 7700
32b SRAM Read (8kb) | 5.0 N/A |
32b DRAM Read 640 N/A
FP32 FP16 INT8 INT4 1 10 100 1000 10000 1 iO 160 1000

Data Type

Figure 7: (Left) Comparison between peak throughput for different bit-precision logic on Titan RTX and A100
GPU. (Right) Comparison of the corresponding energy cost and relative area cost for different precision for
45nm technology [95]. As one can see, lower precision provides exponentially better energy efficiency and higher
throughput.
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« Uniform Quantization 01

Uniform ‘_

Quantization

« Can be represented by fixed-point integers.

]

« Can compress and accelerate the inference.

« Non-Uniform Quantization ¢ -

Non-uniform

Quantization —lf

M ’

« Levels are arbitrarily spaced.

« Non-uniform quantization schemes are —
difficult to be deployed efficiently on
general computation hardware.

Figure taken from Gholami et al., 2021, A Survey of Quantization
Methods for Efficient Neural Network Inference
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 Symmetric Quantization -l - L
xq = clip (round G) ,n,p)
« Symmetric quantization quantize
parameters within (—a, a). e ‘6’ >0
« 0 will be quantized to exactly integer O.
= —(0.5 =
DU R e S
« Asymmetric Quantization
xq = clip (round G— z),n,p)
+ Much more flexible (~a, B). i -~ ; R

« Must ensure 0 will be quantized to an

integer Z exa Ctly Figure taken from Gholami et al., 2021, A Survey of Quantization
Methods for Efficient Neural Network Inference
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« Layer-wise Quantization « Channel-wise Quantization
« The same clipping range is applied « Assign each channel a unique
to all weights in a layer. clipping range.
« Could have bad results if channels « The computation may become
differ a lot. more complex than layer-wise.
100 4
75 1
) >0 Weight range of a DW-Conv
g 237 layer in MobileNetV2
x 0-*:-*@ -tlss-2%- qil=1&=-=-2:% ==
I
gure taken from Nagel et al., 2019, Data-Free
—50 A uantization Through Weight Equalization and Bias

orrection.
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Two ways to produce quantized models %242 P Eim
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1. Post Training Quantization (PTQ)

2. Quantization Aware Training (QAT)
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« Features of PTQ

« Low-cost, only need a pretrained model

and calibration data (10~1000 training i _ — :
images) to finish quantization. L Pre-trained model ] [ Calibration data J
, ! ! ﬂ

« Fast, PTQ can quantize model in several Calibration
minutes. ) 1 ’

Quantization
« Easy to use, only an API call. I

. Quantized model
« Low performance: Quantizing a ResNet- \ J

18 to to 4-bit can only have 39% accuracy,
as explained in [1].

Figure taken from Gholami et al., 2021, A Survey of Quantization
Methods for Efficient Neural Network Inference

Ref. [1] Nagel et al., 2019, Data-Free Quantization Through Weight Equalization and Bias Correction.
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« How to calibrate quantized models?
« In PTQ, we need to estimate the quantization range of both weights and activations.
« Several ways to find the quantization range:

« Use min-max range
« Minimize Mean Squared Error
«  Minimize KL Divergence Loss =-1 i . B

Q

o (<«

—128 127
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e Features of QAT

« End-to-end training. Requires all training Pre-trained model
iImages and huge computing resources. T Training data
* Slow, need >100 GPU hours. | Quantization I )
r ! ! 1
* Not Easy to use, we have to modify the Retraining / Finetuning
training codes. - I ’
- High performance: Quantizing a ResNet- | Quantized model J

18 to 3-bit can retain original FP model

pe rfo Fmance [1 ] Figure taken from Gholami et al., 2021, A Survey of Quantization
Methods for Efficient Neural Network Inference

Ref. [1] Esser et al.,, 2020, Learned step size quantization.
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« How to learn a quantized model?
« The quantization function (round-to-integers) is not differentiable. To perform
standard backpropagation, we need to estimate the gradients of step function:

Weigh r s Quantized Weight Q

(FP) Quantizer (INT)

1.1 | 2.2 1 2
- P > Forward Pass
-1.7 | 3.6 c 2 2

STE
0.1 | -0.1 0.1 | -0.1
2 1 1 2 > Backward Pass
-0.2 | 0.2 -0.2 | 0.2
Gradient dL/dr Gradient dL/dQ
(FP) (FP)
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« Folding Batch Normalization Layers

output

A

output

Quantization

Quantization

moments

weights

input

input
Figure C.6: Convolutional layer with batch normalization:

Figure C.5: Convolutional layer with batch normalization: .
inference graph

training graph
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Post-Training Finetuning Quantization TIEESR@ ol:1T
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« |s there an intermediate space between PTQ and QAT?

« Recently, Nagel et al. 2020 and Li et al. 2021 propose to reconstruct the internal
output of the quantized model to optimize the quantized weights.

Layer 1 Layer 2 Layer 3 ... Layern

FP Model

:l

Layer-wise Reconstruction

Quantized

Chapter 2 Section 11 May 7, 2021 Advanced Computer Vision 17



Post-Training Finetuning Quantization %42 Cfpidim
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« Experimental Results

Methods Bits (W/A) ResNet-18 ResNet-50 MobileNetV2 RegNet-600MF RegNet-3.2GF MNasNet-2.0
Full Prec. 32/32 71.08 77.00 72.49 73.71 78.36 76.68
ACIQ-Mix (Banner et al., 2019) 4/4 67.0 73.8 - - - -
ZeroQ (Cai et al., 2020)* 4/4 21.71 2.94 26.24 28.54 12.24 3.89
LAPQ (Nahshan et al., 2019) 4/4 60.3 70.0 49.7 57.71%* 55.89* 65.32%*
AdaQuant (Hubara et al., 2020) 4/4 67.5 73.7 34.95% - - -
Bit-Split (Wang et al., 2020) 4/4 67.56 73.71 - - -

BRECQ (Ours) 4/4  69.60-+0.04  75.05+0.09 66.57 +0.67 68.33+0.28 74.21-+0.19 73.56-+-0.24
ZeroQ (Cai et al., 2020)* 2/4 0.08 0.08 0.10 0.10 0.05 0.12
LAPQ (Nahshan et al., 2019)* 2/4 0.18 0.14 0.13 0.17 0.12 0.18
AdaQuant (Hubara et al., 2020)* 2/4 0.21 0.12 0.10 - -

BRECQ (Ours) 2/4  64.80-+0.08  70.29-+0.23 53.34+0.15 59.31+0.49 67.15-+0.11 63.01-+0.35
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Zero-Shot Quantization (EZE
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« Zero-Shot Quantization or Data-Free Quantization

« ZSQ requires no real data for model quantization.
* Need to synthesize artificial data.

« In Cai et al. 2020, the data is learned by gradient descent by matching its statistics
variable with BN running mean and variance.

Gaussian Random Data Synthesized Data

Chapter 2 Section 11 May 7, 2021 Advanced Computer Vision 19
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« Weight Equalization
« Modify weights to suitable-for-quantization
ai—1
Wi &« Wi

i

O.OO—LQEI@:L ET%T—HH Hﬁl nD&|| - ;TT [_]-I---
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Mixed-Precision | Frg "_g'"f'ﬁ

« Why mixed-precision?
« Different layers have different sensitivities for quantization
« Different layers have different hardware performances
« We can assign less bits to non-sensitive layers and high hardware cost layers

435l 10 O TS T
2 N MR EELRE N NEENAN MR ERlRE.
éigllII~I|;|I:||:|IHI|:||3||:||:||H||¥llill;llillgllrwﬂ

[Nl #params (pointwise) | | #params (depthwise) [ | #weight bits (pointwise) | | #weight bits (depthwise)

Figure 5: Quantization policy under model size constraints for MobileNet-V2. Our RL agent allocates more bits to the
depthwise convolutions, since depthwise convolutions have fewer number of parameters.
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Hardware Quantization Scheme

Hardware
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Quantization Scheme
Uniform symmetric per channel
IEEE 754

Uniform symmetric per layer/channel

Log

Uniform asymmetric per layer/channel

Uniform asymmetric per layer

IEEE 754 without Subnormal
Uniform asymmetric per layer
Ristretto

Uniform symmetric weight(per channel), symmetric

activation

Uniform asymmetric per channel

IEEE 754
Ristretto
IEEE 754
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What is Pruning NEZS N o)1
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 Pruning

« The process of removing weight connections in a network to increase inference
speed and decrease model storage size.[1]

« Removing unused parameters from the over-parameterized network.[1]

« Levels of Pruning

« Channel/Filter; Layer; Block

[1] https://neuralmagic.com/
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 Pipeline

Training Pruning Fine-tuning

Figure 1: A typical three-stage network pruning
pipeline.

yes

2
—
——
—
s

b no

Stop pruning

One example of iterative pruning
Ref. [1] Liu, et al. Rethinking the Value of Network Pruning. ICLR2019
[2] Molchanov, et al. Pruning Convolutional Neural Networks for Resource Efficient Inference. ICLR2017
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Algorithm 1: Pruning Deep Neural Networks

Initialization: W) with W(©) ~ N(0, %), iter = 0.
Hyper-parameter: threshold, d.
Output: W®),

Train Connectivity
while not converged do

W = wl=1 _ pOg (W=D, pt=1)).

t=t+1;
end

Prune Connections
// initialize the mask by thresholding the weights.
Mask = 1(|W| > threshold);

W =W . Mask;

Retrain Weights

while not converged do

wt) — =1 _ ﬂ(t)vf(w(t—l);xtt—l)};
W@ =w® . Mask;

t=t+1;

end

Iterative Pruning
threshold = threshold + d[iter + +];
goto Pruning Connections;

Ref. [1] Han, et al. Learning both Weights and Connections for Efficient Neural Networks. NIPS2015
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What is Pruning LEES =T
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« Sparsity Structure

« Structured

 Unstructured data-free data-driven .$ training-aware
(no model evaluation) (inference-only) (full training)
b
« Schemes 0210530 s~ PREPR P pPRep® v 4 LN
similarity magnitude elements §33 similarity merge approximation A
- Data-free §3a § 3.:t1v = 15t order ® 34 L, §36 Va"at“;’;zl
2" order® 35 t
° D ata- d rive N “energy” input sensitivity Fourier sensitivity Hebbian similarity

(outputs always (do outputs change  (which weightsdo  (strengthen weights (outputs are
nearly zero?)  across examples?) not influence outputs?) bet-weencom;lated all similar?)
neurons)

« Training-aware

Fig. 10. Overview of schemes to select candidate elements for removal during sparsification

Ref. [1] arxiv.org/abs/2102.00554
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Data-free Pruning H%42 CPimim
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» L1-norm based[1] = ath(WyX) + ..+ aih(Wi X) ..+ ajh(W) X) .

. Similarity based[2] et =MW E) ot (@t )+

min(E((zn —za-1)*)) < min((a3) ||&,13) E| X3

kernel matrix

--r:._,i l
i M1
h E mmmE Sij = (ﬂ?) 1 &,5113-

Ti+1 niy2
X; Xit1 Xitz . . ..
1. Compute the saliency s; ; for all possible values of (i, j). It can be stored as a square
Figure 1: Pruning a filter results in removal of its corresponding feature map and related kernels in matrix M, with dimension equal to the number of neurons in the layer being consid-
the next layer.
ered.

2. Pick the minimum entry in the matrix. Let it’s indices be (i, j'). Delete the j"# neuron,
and update ay <—ay +aj.

3. Update M by removing the j* column and row, and updating the """ column (to

Ref. [1] Li, et al. Pruning Filters for efficient convnets. ICLR2017 oo B PCAEd )

[2] Data-free parameter pruning for Deep Neural Networks. BMVC2015.
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Data-driven Pruning TiEXE =T
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e ThiNet[1]
 least effect on the next layer’ s output

« Regression based feature reconstruction[2]
« LASSO

input of filters of input of filters of input of
layer i layeri — layerivl _layeritl _ layeri+2 2
. — (- | !
Onginal R N I e e R | m
¢ = \ L B9 g arg min E Ui — E X
prune weak filters J (5)
et ) EF ) S (] 5 = jes
Model * oo ‘:> 1 /I * “T..ﬁ |:>
— | |
@ﬁne—mm’.ng S.t- ‘S‘ =C><T? S C {112:..-50}.
=9 —
Fine-tuned ﬂ — =
Model ﬁ':] :> @ : =7 E>

Ref. [1] Luo, et al. A filter level of pruning method for deep neural network compression. ICCV2017.
[2] He, et al. Channel pruning for accelerating very deep neural networks. ICCV2017
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Training-aware: Optimal Brain Damage|[1] %t o) Ei

Cost Function £ = Cost(Train) + R(Network Complexity)

Approximate E by a Taylor series.

1 0*E 82E
O0F = 52%@? 8a2 —f(ﬂu)szu +f

Choose a reasonable network architecture

Train the network until a reasonable solution is obtained

Compute the second derivatives hyp for each parameter

Compute the saliencies for each parameter: s, = hyruj /2

Sort the parameters by saliency and delete some low-saliency parameters
Iterate to step 2

anp s QY N o N T )

Ref. [1] LeCun, et al. http://yann.lecun.com/exdb/publis/pdf/lecun-90b.pdf
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Training-aware: Optimal Brain Damage[1]

z; = f(a;) and

dEz;gi&H'F%;hﬁ&J?"‘

82E

Ref. [1] LeCun, et al. http://yann.lecun.com/exdb/publis/pdf/lecun-90b.pdf

2
= ['(ai)’ zwha - f”(ﬂa)

=) wiz;
j

1
5 2 hijduiduj + O(||aU[*)

i#]

OF

£
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Training-aware Pruning IEES: =T
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« Network Slimming[1]

« pruning by channel scaling factors in the following BN layer

channel scaling ) , channel scaling _ ,
i-th conv-layer  factors (i+1)=j-th i-th conv-layer factors (i+1)5-th

—\ conv-layer conv-layer
R . AT (@ 7 .
270,001 [

pruning _ R —— @ 0.2%0

® 0290
£ 0,003 [+ ‘ )

@® oz )

AT\ o
\w b.osU) —

initial network compact network

Figure 1: We associate a scaling factor (reused from a batch normalization layer) with each channel in convolutional layers. Sparsity
regularization is imposed on these scaling factors during training to automatically identify unimportant channels. The channels with small
scaling factor values (in orange color) will be pruned (left side). After pruning, we obtain compact models (right side), which are then
fine-tuned to achieve comparable (or even higher) accuracy as normally trained full network.

Ref. [1] Liu, et al. Learning Efficient Convolutional Networks through Network Slimming
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Rethinking the Value of Network Pruning

A 4-layer model

Predefined: prune
X% channels in
each layer

Automatic: prune a%,
b%, c%, d% channels
in each layer

Ref. [1]] Liu, et al. Rethinking the Value of Network Pruning. ICLR2019

Pruning

Chapter 2 Section 11

EES i
nF Wil
Tsinghua University sensetime

Automatic

Unstructured

May 7, 2021
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Rethinking the Value of Network Pruning
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Experiments of Predefined Structured Pruning

Pruned Model

@ &) =
sensetime

Dataset Model Unpruned Fine-tuned Scratch-E Scratch-B
VGG-16 | 93.63 (£0.16) VGG-16-A  93.41 (£0.12) 93.62 (+0.11) 93.78 (+0.15)
ResNet-36-A 92,97 (£0.17) 92.96 (+0.26) 93.09 (+0.14)
- ResNet-56 | 93.14 (+0.12
L1 norm CIFAR-10 ese ( ) ResNet-36-B 92,67 (£0.14)  92.54 (£0.19) 93.05 (+0.18)
ResNet-110-A  93.14 (+0.16) 93.25 (£0.29) 93.22 (+0.22)
ResNet-110 | 93.14 (£0.24
ese (029 ResNet-110-B 92,69 (£0.09) 92.89 (£0.43) 93.60 (+0.25)
ImageNet | ResNet-34 73.31 ResNet-34-A 72.56 72.77 73.03
ResNet-34-B 72.29 72.55 7291
Dataset | Unpruned | Strategy Pruned Model
VGG-16 VGG-Conv VGG-GAP VGG-Tiny
71.03 Fine-tuned —1.23 —3.67 —11.61
7151 Scratch-E =275 —4.66 —14.36
T h . N ImageNet ' Scratch-B +0.21 —2.85 —11.58
| et £ ResNet-50 ResNet50-30% ResNet50-50%  ResNet50-70% Scratch-E: e pocC hs
75.15 Fine-tuned —6.72 —4.13 —3.10
2613 | Seratch-E —5.21 —282 —1.71 Scratch-B: FLOPs budget
' Scratch-B —4.56 —2.23 —1.01
Ref. [1]] Liu, et al. Rethinking the Value of Network Pruning. ICLR2019
Chapter 2 Section 11 May 7, 2021 Advanced Computer Vision 34



Rethinking the Value of Network Pruning
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Experiments of Automatic Structured Pruning

D

=

sensetime

Dataset Model Unpruned Prune Ratio Fine-tuned Scratch-E Scratch-B
VGG-19 93.53 (£0.16) 70% 93.60 (£0.16) 93.30(=0.11) 93.81 (=0.14)
40% 94.77 (£0.12) 9470 (=0.11) 94.90 (£0.04)
PreResNet-164 | 95.04 (=0.16
CIFAR-10 | & eneshe 010 0% 9423(£021) 94.58(£0.18) 9471 (£0.21)
. . 40% 94.00 (£020) 93.68(=0.18) 94.06 (=0.12)
DenseNet-40 | 94.10(+0.12
Network Slimmin g fsee E0I2 o 93.87(£0.13) 93.58(2021) 93.85 (20.25)
VGG-19 72.63 (£0.21) 50% 72.32(£0.28) 71.94(=0.17) 73.08(=0.22)
40% 76.22 (£0.20) 76.36 (=0.32) 76.68 (=0.35)
PreResNet-164 | 76.80 (0.19
CIFAR-100 | = Ceshe 019 coq 74.17 (£0.33)  75.05 (= 0.08) 75.73 (£0.29)
DenseNet-40 | 73.82 (+0.34) 40% 73.35(x=0.17) 73.24(=0.29) 73.19 (=0.26)
60% 7246 (£0.22) 72.62(=036) 72.91(+0.34)
ImageNet VGG-11 70.84 50% 68.62 70.00 71.18
Dataset Model Unpruned Pruned Model Pruned Scratch-E  Scratch-B
. ResNet-41 75.44 75.61 76.17
Sparse Structure Selection2] uene: | Reerso | 7612 Rewers2  ais 137 7467
ResNet-26 71.82 72.55 73.41
Ref. [1]] Liu, et al. Rethinking the Value of Network Pruning. ICLR2019
[2] Huang et al. Data-Driven Sparse Structure Selection for Deep Neural Networks. ECCV2018
Chapter 2 Section 11 May 7, 2021 Advanced Computer Vision 35



Rethinking the Value of Network Pruning

Experiments of Unstructured Pruning
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D

Dataset Model Unpruned  Prune Ratio  Fine-tuned Scratch-E Scratch-B

30%  93.51 (£0.05) 93.71 (£0.09) 93.31 (+0.26)
VGG-19 93.50 (£0.11)  80%  93.52(+0.10) 93.71 (£0.08) 93.64 (+£0.09)
95%  93.34(£0.13) 9321 (£0.17) 93.63 (£0.18)
30%  95.06 (=0.05) 94.84 (£0.07) 95.11 (+0.09)
CIFAR-10 | PreResNet-110 | 95.04 (+0.15) 80% 94,55 (+£0.11) 93.76 (+£0.10) 94.52 (+0.13)
95% 92,35 (+0.20) 91.23(+0.11) 91.55 (+0.34)
0% 05.21 (£0.17) 9522 (£0.18) 95.23(L0.14)
DenseNet-BC-100 | 95.24 (+0.17) 80% 95.04 (£0.15) 9442 (+0.12) 9512 (+£0.04)
. 95% 9419 (=0.15) 92.91 (£0.22) 93.44 (£0.19)
Ma gn itude-based 30%  71.96 (=036) 7281 (20.31) 73.30 (20.25)
. VGG-19 7170 (+0.31) 50% 7185 (x=0.30) 73.12(x0.36) 73.77 (+£0.23)
Prun|ng [2] 95%  70.22 (+£0.38) 70.88 (+£0.35) 72.08 (+0.15)
30%  76.88 (£0.31) 76.36 (£0.26) 76.96 (£0.31)
CIFAR-100 | PreResNet-110 | 76.96 (£0.34) 50% 76.60 (£0.36) 75.45 (+0.23) 76.42 (+0.39)
95% 68.55 (£0.51) 68.13 (£0.64) 68.99 (£0.32)
30% 77.23 (£0.05) 77.58 (£0.25) 77.97 (£0.31)
DenseNet-BC-100 | 77.59 (+0.19) 50% 77.41 (£0.14) 77.65 (£0.09) 77.80 (+0.23)
95% 73.67 (£0.03) 71.47 (£0.46) 72.57 (+0.37)

30% 73.68 7295 74.02

ImageNet VGG-16 7337 60% 73.63 71.50 73.42

ResNet-50 76.15 30% 76.06 7407 75.70

60% 76.09 73.69 7491

Ref. [1]] Liu, et al. Rethinking the Value of Network Pruning. ICLR2019
[2] Han, et al. Learning both Weights and Connections for Efficient Neural Networks. NIPS2015
Chapter 2 Section 11 May 7, 2021
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Rethinking the Value of Network Pruning EEE
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Analysis of Pruned Architectures

010 Channel Pruned VGG-16 on CIFAR-10 Weight Sparsified VGG-16 on CIFAR-10
94.0 17 94.01
""\,/I’// 93.5 1
Sl &
> > 93.0
8 530 o
§ § 92.5
< <
=925 % 92.0
o U2 @
@ [
= — = -
! —— Network Slimming 91.51 —— Unstructured Pruning
92.0 11 —— Uniform Pruning —— Uniform Sparsification
: ; § T ; i gl_ﬂ ...... ; ........... ; ........... ; ........... ; ........... ; ........... ; ...........
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Rethinking the Value of Network Pruning
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Sparsity Patterns & Guided Pruning

Layer | Width ~ Width* || Layer [ Width  Width*
1 64  39.0+3.7 8 512 2173466
: 64  64.0+£0.0 9 512 120.0+4.4 Channel Pruned VGG-19 on CIFAR-100
3 128 1278404 || 10 512 63.0+1.9 3
4 128 1280400 11 512 478429 -]
5 256  255.0+1.0 12 512 620434 2
6 256  250.5+0.5 13 512 88.843.1 g 11
7 256 2260+25 || Total | 4224 1689.2 ® 70-
o
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Ref. [1]] Liu, et al. Rethinking the Value of Network Pruning. ICLR2019
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Pruning as NAS NEISE@ o)1

Tsinghua University sensetime

DMCP[1] / ®\\P\

prull-l .
Markov Process Parameterized by Architecture Parameters

Staocl Figure 3. The Modeling of channel pruning as a Markov process.
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Ref. [1] ] Guo, et al. DMCP: Differentiable Markov Channel Pruning for Neural Networks. CVPR2020
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DMCPJ1 :

[ ] Group | Model FLOPs Top-1 A Top-1 Uniform 1.0x 1.8G 70.1 -
Uniform 1.0x 300M 723 - Resl18 | FPGM[5] 1.04G  68.4 19
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Ref. [1] ] Guo, et al. DMCP: Differentiable Markov Channel Pruning for Neural Networks. CVPR2020
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Basic Concept EZS N o)1

Tsinghua University sensetime

« What is Knowledge Distillation?

« Knowledge Distillation distill the knowledge from a larger deep neural network into
a small network

« Three key component: teacher model, student model and knowledge transfer

Teacher Model

- e e e e e e -

Fig. 1 The generic teacher-student framework for knowledge distillation.

[1] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015.
[2] Gou J, Yu B, Maybank S J, et al. Knowledge distillation: A survey[J]. International Journal of Computer Vision, 2021: 1-31.
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Basic Concept

« What can Knowledge Distillation do?
compressing heavy deep neural networks

prevent specialists from overfitting

helps the training process of a smaller student network

improve final performance

System & training set Train Frame Accuracy | Test Frame Accuracy
Baseline (100% of training set) 63.4% 58.9%
Baseline (3% of training set) 67.3% 44.5%
Soft Targets (3% of training set) 65.4% 57.0%

1EEE
K% IHI Wil
Tsinghua University sensetime

Table 5: Soft targets allow a new model to generalize well from only 3% of the training set. The soft
targets are obtained by training on the full training set.

[1] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015.
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Knowledge Distillation with Logits (% £z 0

sensetime

« Knowledge Distillation Design

« For teacher output logits t;, student output logits s;, one-hot label gt;, temperature T

« Soft logits:
exp(h) _ exp(

TiexpEh ' Tt piexph
« Soft loss:

* Lsoft = _Z{{Silogti
« Hard loss:

Lhara = _Z{{gtilogsi

« KD Training:

* L=Lpgrq+t aLsoft

[1] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015.
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Knowledge Distillation with Logits %42 CfP) Eiin

sensetime

« Why does Knowledge Distillation work:

« Soft targets contain information of inter-class distance and in-class variance than one-
hot labels

« The knowledge from the teacher expresses a more general learned information that is
helpful for building up a well-performing student

« Problems
« The parameter selection of a and temperature T should be considered

« When the capacity of the student is too low, it is hard for the student to incorporate
the logits information of the teacher successfully

Chapter 2 Section 11 May 7, 2021 Advanced Computer Vision 45



Knowledge Distillation with Intermediate Features %17 o Eim

« Feature-based distillation enables learning richer information from the teacher and
provides more flexibility for performance improvement.

4 )\

Distance metric

>
J

4 N\

Feature transform

Distillation m_
Position

v

Fig. 3. An illustration of general feature-based distillation.

[1] Wang L, Yoon K J. Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks[J]. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2021.
[2] Phuong M, Lampert C H. Distillation-based training for multi-exit architectures[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.

2019: 1355-1364.
Chapter 2 Section 11 May 7, 2021 Advanced Computer Vision
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Knowledge Distillation with Intermediate Features NEIS A o)1

Tsinghua University

« Transformation of the guided features:
« Teacher and student may have different size of intermediate feature maps

« Distillation positions of features:
« The distillation position includes the feature map at the end of each block, at the end of each stage, etc.

« Distance metric for measuring distillation:
« To measure the features after transformation, the distance metric is used to construct the kd loss

[1] Wang L, Yoon K J. Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks[J]. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2021.
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Knowledge Distillation with Intermediate Features

k2%

Tsinghua University

TABLE 2
d S umma ry A taxonomy of knowledge distillation from the intermediate layers (feature maps). KP incidates knowledge projection.
Method Teacher’s TF'; Student’s TF; | Distillation position | Distance metric | Lost knowledge
FitNet [52] None 1 x 1 Conv Middle layer Ly None
AT [36] Attention map Attention map End of layer group Ly Channel dims
KP [56] Projection matrix | Projection matrix Middle layers L, + KP loss Spatial dims
FSP [57] FSP matrix FSP matrix End of layer group Lo Spatial dims
FT [54] Encoder-decoder | Encoder-decoder | End of layer group L, Channel + Spatial dims
AT [36] Attention map Attention map End of layer group L Channel dimensions
MINILM [58] Self-ttention Self-attention End of layer group KL Channel dimensions
Jacobian [59] | Gradient penalty | Gradient penalty | End of layer group L, Channel dims
SVD [57] Truncated SVD Truncated SVD End of layer group Lo Spatial dims
VID [8] None 1 x 1 Conv Middle layers KL None
IRG [18] Instance graph Instance graph Middle layers Lo Spatial dims
RCO [60] None None Teacher’s train route Lo None
SP [61] Similarity matrix | Similarity matrix Middle layer Frobenius norm None
MEAL [62] | Adaptive pooling | Adaptive pooling | End of layer group | L,,2/KL/Lgan None
Heo [62] Margin ReLU 1 x 1 Conv Pre-ReLU Partial Lo Negative features
AB [63] Binarization 1 x 1 Conv Pre-ReLU Margin Lo feature values
Chung [64] None None End of layer Lcan None
Wang [65] None Adaptation layer Middle layer Margin L; Channel + Spatial dims
KSANC [66] | Average pooling | Average pooling Middle layers L2 + Lgan Spatial dims
Kulkarni [67] None None End of layer group Lo None
IR [68] Attention matrix | Attention matrix Middle layers KL+ Cosine None
Liu [18] Transform matrix | Transform matrix Middle layers KL Spatial dims
NST [55] None None Intermediate layers MMD None
Gao [69] None None Intermediate layers Lo None

[1] Wang L, Yoon K J. Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks[J]. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2021.
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Teacher-Student Architecture %42 Cfpidim
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« Pattern:

« Simplified Structure:
e Res34 & Res18
« Quantized Structure:

« Res18 & Int8 Res18 v
e Same Structure Knowledge Distillation
Student Model
« Small Structure
T A 4
. Simplified Structure
« Conclusion: T
. Quantized Structure
« The model capacity gap between the large
deep neural network and a small student Same Structure
neural network can degrade knOWIGdge Small Structure (opitimazed/condensed)
transfer.

Fig. 9 Relationship of the teacher and student models.

[1] Gou J, Yu B, Maybank S J, et al. Knowledge distillation: A survey[J]. International Journal of Computer Vision, 2021: 1-31.
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Teacher-Student Architecture
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nghua University sensetime

Each teacher model could potentially have its own best student architecture.
NAS can be used to discover the best student model or teacher model.

RL agent . -
Searching trajectory

—\N\>
e rels Searched by Teachers | Studentl  Student2 Comparison
to distill GT: d';;:itlil conventional NAS EfficientNet-B7 [31] 65.8% 66.6%  studentl < student2
IncepRes-v2 EFNet-B7 AN/ = Inception-ResNet-v2 [28] 67.4% 66.1% studentl > student2
Go_od models to train Searched by AKD
with one-hot labels Table 1. ImageNet accuracy for students with different teachers.
Architecture search space

Figure 1. Searching neural architectures by the proposed AKD and
conventional NAS [30] lead to different optimal architectures.

[1] Liu Y, Jia X, Tan M, et al. Search to distill: Pearls are everywhere but not the eyes[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020: 7539-7548.
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More Advanced KD Methods NEZS N o)1

Tsinghua University sensetime

« Multi-Teacher: employ multiple supervision knowledge
« Date-Free Distillation: requires no training data

Teacher

Knowledge for Generating Data

Teacher 1 Teacher2 L,ecee Teacher n Student
1 Sythesis Data Distillation
v A 4 v
Knowledge Transfer
Fig. 11 The generic framework for multi-teacher distillation. »  Student
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More Advanced KD Methods

Offline Distillation: most common form, the
large teacher model is first trained and 2) the
teacher model is used to guide the training of the
student model during distillation.

Online Distillation: both the teacher model and
the student model are updated simultaneously,
and the whole knowledge distillation framework is
end-to-end trainable.

Self-Distillation: the same networks or supernet
(BigNASJ1]) are used for the teacher and the
student models

(EEE1

Tsinghua University

% E
sensetime

Offline Distillation Student
Online Distillation
Teacher Student
Self-Distillation
- Pre-trained
Teacher/Student || To be trained

Fig. 8 Different distillations. The red color for “pre-trained”
means networks are learned before distillation and the yellow
color for “to be trained” means networks are learned during
distillation

[1] Yu J, Jin P, Liu H, et al. Bignas: Scaling up neural architecture search with big single-stage models[C]//European Conference on Computer Vision. Springer,
Cham, 2020: 702-717.
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What is NAS nx “ﬂ”? S i i

Deep Learning relays heavily on novel deep neural nets.

Hand- crafted Feature

SIFT+FVs AlexNet VGGNet- ResNet- SENet
19 152

AU
o O

N
o

ImageNet Topl Error[1]
w
o

—
o

[1] https://paperswithcode.com/sota/image-classification-on-imagenet
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What is NAS %47 CfpEim

inghua Univ

NAS focus on automating the network architecture design.

Hand- crafted Feature

= 50
S
0 40
o NAS NNs
Q.
S 30 ‘
3] ! !
< 20 3 17.3 16.1 2
G) .
Q)
£10 I . . . -
N % e N S~ A
Q> <& \t’j‘e eé P N T
23 v & by < o° S
3 Qg’ . @Q
O
[1] https://paperswithcode.com/sota/image-classification-on-imagenet (2/{\\

*: with nosiy student.
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NAS Milestones

NASNet DARTS NASFPN BigNAS

FBNet DetNAS UnNAS

AmoebaNet MNasNet OFA Efficient

ENAS ProxylessNAS EfficientNet NetV2
One-Shot NAS
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NAS Literature 1: NASNet %42 P Eim
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* (S mple architectur AW
Main steps: \ "W probabily p ] l
1. RNN controller(Agent) generates child
architecture A with prob p 4 A Train a child network
with architecture A to
2. Train child network A on proxy task get The controller (RNN) convergence to get
validation accuracy R validation accuracy R
N J N /
3. Use prob p and accuracy R to update the agent T
4. Back to setp1 (Scale gradient of p by Fq

Uo update the controller)

Key problems Figure 1. Overview of Neural Architecture Search [71]. A con-
troller RNN predicts architecture A from a search space with prob-
ability p. A child network with architecture A is trained to con-
vergence achieving accuracy K. Scale the gradients of p by R to
update the RNN controller.

[1] Zoph, Barret, and Quoc V. Le. "Neural architecture search with reinforcement learning." arXiv preprint arXiv:1611.01578 (2016).

[2] Zoph, Barret, et al. "Learning transferable architectures for scalable image recognition.” Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018.

« Every child needs to be trained from scratch on
proxy task, which introduces prohibitive cost:
thousands of GPU-days.
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NAS Literature 2: ENAS

Contributions

« ENAS proposes sharing parameters strategy,
l.e. reusing partial weights from the former
trained child network. ENAS significantly
reduces the overall cost.

« ENAS can also be viewed as a weight-
sharing supernet approach.

%42 Cpitin

nghua University sensetime

Figure 2. The graph represents the entire search space while the
red arrows define a model in the search space, which is decided
by a controller. Here, node 1 is the input to the model whereas
nodes 3 and 6 are the model’s outputs.

[1] Pham, Hieu, et al. "Efficient neural architecture search via parameters sharing.” International Conference on Machine Learning. PMLR, 201

Chapter 2 Section 11 May 7, 2021 Advanced Computer Vision
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NAS Literature 3: One-shot NAS (EEE i i
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Input 1 Input 3

Contributions i v
"< | Concat. |-
« One-shot NAS builds a weight-sharing supernet JUPP Legend
in which each subnet can be viewed as a N MR v ey [ [T
candidate architecture. S . 2 . : - > Edge off
36 R K !
« One-shot NAS trains the supernet properly and >|E|ﬁ
uses the subnet validation accuracy to estimate
the final candidate performance. } - i
Choice Block 0 i e IP\ :
 Supernet training is a once cost, so it orderly ! S R i
reduces the cost. Choice Block i Choic\el Choilcez Choice 3 i
! N | N I i
DraWb aCkS Choice Block - \ |
} N i
« Unreliable performance ranking in supernet. (a)

[1] Bender, Gabriel, et al. “Understanding and simplifying one-shot architecture search.” International Conference on Machine Learning. PMLR, 2018.

[2] Stamoulis, Dimitrios, et al. "Single-path nas: Designing hardware-efficient convnets in less than 4 hours.” Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, Cham, 2019.

[3] Guo, Zichao, et al. "Single path one-shot neural architecture search with uniform sampling.” European Conference on Computer Vision. Springer, Cham, 2020.

Chapter 2 Section 11 May 7, 2021 Advanced Computer Vision 59



NAS Literature 4: MNasNet %42 P isiin
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Sample models

Controller m Trainer

Contributions

« Searching directly on large dataset ImageNet.

reward Multi-objective

reward

 Integrating platform latency to the searching

reward calculatlon, which helps to find a Figure 1: An Overview of Platform-Aware Neural Archi-

architecture that achieves the best latency- tecture Search for Mobile.
77
accuracy tradeoff.
%76_ :",
g7 nashe moebaNet-
D raWbaCkS :%g; . pneste Mobﬂewewzmil'bw A
NASNet-A
Following NASNet costly RL-based searching 5
. & 79 .
algorithm: Thousands of TPU days g MoblNetv2
714
MobﬁeNet\H
[y 50 100 150 200

Inference Latency (ms)

Figure 2: Accuracy vs. Latency Comparison — Our Mnas-
Net models significantly outperforms other mobile models

’;
[1] Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "Darts: Differentiable architecture search.” arXiv pre}.: [29 ° 26}.‘.’5%&&3 l?f\t,af]f,can be found in Table 1.

[2] Chen, Xin, et al. "Progressive differentiable architecture search: Bridging the depth gap between search and evaluation.” Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2019.
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NAS Literature 5;: DARTS

Contributions

« Building a fully-connected supernet, each path
contains several operations.

« Using bi-level optimization method to update
the architecture parameters and weights.

Drawbacks

« Because every operator is maintained in the
computation graph, DARTS is memory hungry.
Typically, DARTS searches the cell on CIFAR10
and then transfers it to ImageNet.

« DARTS is one of the most well-known NAS
baselines. There are many good follow-up
papers, like P-DARTS[2], PCDARTSI[3]

=N

Tsinghua University sensetime

(a) (b) (©) @

Figure 1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Continuous
relaxation of the search space by placing a mixture of candidate operations on each edge. (c) Joint
optimization of the mixing probabilities and the network weights by solving a bilevel optimization
problem. (d) Inducing the final architecture from the learned mixing probabilities.

[1] Liu, Hanxiao, Karen Simonyan, and Yiming Yang. "Darts: Differentiable architecture search.” arXiv preprint arXiv:1806.09055 (2018).
[2] Chen, Xin, et al. “Progressive differentiable architecture search: Bridging the depth gap between search and evaluation.” Proceedings of the IEEE/CVF International

Conference on Computer Vision. 2019.

[3] Xu, Yuhui, et al. "PC-DARTS: Partial channel connections for memory-efficient architecture search.” arXiv preprint arXiv:1907.05737 (2019).
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NAS Literature 6: ProxylessNAS %42 P isiin
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(1) Previous proxy-based approach (2) Our proxy-less approach

Architecture

03] Transfer |

Contributions

. ) Figure 1: ProxylessNAS directly optimizes neural network architectures on target task and hard-

 Searching directly on large dataset ImageNet. ware. Benefiting from the directness and specialization, ProxylessNAS can achieve remarkably

better results than previous proxy-based approaches. On ImageNet, with only 200 GPU hours (200

. H = ; x fewer than MnasNet (Tan et al., 2018)), our searched CNN model for mobile achieves the same
UtI|IZIng real hardware Iatency as a constraint level of top-1 accuracy as MobileNetV2 1.4 while being 1.8 x faster.

factor.

« Proposing binary gate method, which =)
maintains only O(1) operator in the : : @L _ Weight _ ";':';:‘;" % I;:m ---h“;ggl
computation graph, to solve the memory : s Parameters T
issue. .. 8 «— Architecture Parameters —Q Bb n 5

0 <« Binary Gate (O:prune, 1:keep) — 0 1 0 0
- fmap in memory &
(1) Update weight parameters fmap notin memory (2) Update architecture parameters

Figure 2: Learning both weight parameters and binarized architecture parameters.

[1] Cai, Han, Ligeng Zhu, and Song Han. "Proxylessnas: Direct neural architecture search on target task and hardware.” arXiv preprint arXiv:1812.00332 (2018).
Chapter 2 Section 11 May 7, 2021 Advanced Computer Vision
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NAS Literature 7: EfficientNet 123 i i
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84 AmoebaNet-C
Contributions v
« The traditional scaling-up method is to increase a éa" ) ;f.-’f-‘---~rn:;;,};;ﬂii?.if'1°1
single dimension. EfficientNet proposes a Eal [ 777 renars e
compound scaling method which increases width, g, B““m imm(,,gﬁ) :ﬁ
depth and resolution simultaneously. | e =
« A set of good scaling up parameters is found by L Bl
grid search, and the result of SOTA is obtained by 1 i
scale up from MNasNet(EfficientNet-B0) _ i 3
R S woer i
\E deeper |
decper
resouion Ho 5 . B,
(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network
width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.
[1] Tan, Mingxing, and Quoc Le. “Efficientnet: Rethinking model scaling for convolutional neural networks.” International Conference on Machine Learning. PMLR, 2019.

[2] Tan, Mingxing, and Quoc V. Le. "EfficientNetV2: Smaller Models and Faster Training." arXiv preprint arXiv:2104.00298 (2021).
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NAS Literature 8: OFA/ BigNAS %42 Cfpidim
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train a once-for-all network ) )
B Previous: O(N) design cost o OFA + MobileNetva

b W Ours: O(1) design cost 77 =
= . 3 o e P
g S5 W e e,
pecializedlsub-nets\$ g g G; r's "7.3:3‘ '
Ut % I e 37 /S
Contributions
O 20 40 60 80 T .o ) Jso*;;*”&
direct deploy  (no retrain) J, Number of DEDD'GW'E“T SOE}S”E 2 e —
H gaf 67
« Former one-shot NAS methods need to retrain @Ega » DM = BEQLiE =0 v
ou obile mm (AloT) Different Hardware / Constraint Samsung Note10 Latency (ms)
th e fou n d arc h IteCtu re fro m SC ratc h to o bta N th e Figure 1: Left: a single once-for-all network is trained to support versatile architectural configurations
. . . including depth, width, kemnel size, and resolution. Given a deployment scenario, a specialized sub-
fl na I aCcura Cy. O FA/B | g NAS can d I reCt |y d e p I Oy network is directly selected from the once-for-all network without training. Middle: this approach
. . . reduces the cost of specialized deep learning deployment from O(N) to O(1). Right: once-for-all
th e su b net Wlth out fu rt he r retrainin g . network followed by model selection can derive many accuracy-latency trade-offs by training only
once, compared to conventional methods that require repeated training.
® SU pernet tralnlng IS a Once COSt. We Can Sample L Ona-shial model Progressive shrinking Single-stage modal (ours)

Fatrain and dapkay

and deploy a series of different architectures — @ (-5 e
under different constraint. memm o T%}E @E‘
s O é §0

Distllalion

Fig. 1: Comparizon with several existing workflows., We use nested squares to
denote models with shared weights, and use the size of the square to denote the
size of each model. Workflow in the middle refers the concurrent work from [3],
where submodels are sequentially indueed through progressive distillation and
channel sorting. We simultaneously train all child models in a single-stage model
with proposed modifications, and deploy them without retraining or finetuning,

[1] Cai, Han, et al. "Once-for-all: Train one network and specialize it for efficient deployment." arXiv preprint arXiv:1908.09791 (2019).
[2] Yu, Jiahui, et al. "Bignas: Scaling up neural architecture search with big single-stage models." European Conference on Computer Vision. Springer, Cham, 2020.
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A taxonomy of NAS 1EEE 5 i
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Search Strategy Important Work

Individual — Reinforcement NASNet, PNAS, Block-QNN, MNasNet, EfficientNet, NAS-FPN
Individual — Evolutionary AmoebaNet, Genetic cnn, Evolved transformer
Weight-Sharing Heuristic ENAS, Smash, SPOS, FairNAS, OFA, BigNAS

Weight-Sharing Differentiable DARTs, PDARTs, PCDARTs, NAO, SNAS, ProxylessNAS,
Predictor-based Search Chamnet, Peephole

[1] Xie, Lingxi, et al. "Weight-Sharing Neural Architecture Search:\\A Battle to Shrink the Optimization Gap." arXiv preprint arXiv:2008.01475 (2020).
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NAS + Different CV tasks %47 G Eii

NAS + XX Task?

Object Detection: Semantic Segmentation: Generative Models:

DetNAS AutoDeeplab AutoGan
NASFPN AdversarialNAS
EfficientDet
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NAS + Different ML algorithms

NAS + XX Learning?

Unsupervised Learning[1]
Domain Adaptation[2]
Transfer Learning(3]
Multi-Task Learning[4]
Meta Learning[5]

[1] ECCV2020. Liu, Chenxi, et al. "Are Labels Necessary for Neural Architecture Search?."

[2] NeurlPS 2020. Li, Yanxi, et al. "Adapting neural architectures between domains.” -> AdaptNAS

[3] NeurlPS 2020. Cai, Han, et al. "Tiny Transfer Learning: Towards Memory-Efficient On-Device Learning."

[4] CVPR 2020. Gao, Yuan, et al. "Mtl-nas: Task-agnostic neural architecture search towards general-purpose multi-task learning."
[5] ICLR 2019. Lian, Dongze, et al. "Towards fast adaptation of neural architectures with meta learning.” -> T-NAS
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NAS + Unsupervised Learning IEESE@ o111

training/search phase evaluation phase

U@
g L

unsupervised training
learning on target data

) % NAS on target data
Unsupervised NAS: We
can achieve comparable Figure 1: Unsupervised neural architecture search, or UnNAS, is a new
NAS results without labels. problem setup that helps answer the question: are labels necessary for neural

architecture search? In traditional unsupervised learning (top panel), the train-
ing phase learns the weights of a fixed architecture; then the evaluation phase
measures the quality of the weights by training a classifier (either by fine-tuning
the weights or using them as a fixed feature extractor) using supervision from
the target dataset. Analogously, in UnNAS (bottom panel), the search phase
searches for an architecture without using labels; and the evaluation phase mea-
sures the quality of the architecture found by an UnNAS algorithm by training
the architecture’s weights using supervision from the target dataset.

[1] ECCV2020. Liu, Chenxi, et al. "Are Labels Necessary for Neural Architecture Search?.”
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Summary TEESR@ ol:1T

singhua Univer

Model Compression

Quantization: utilizing integer only arithmetic to speed up the inference

Pruning: removing unnecessary connections to get smaller models

KD: distilling teacher models’ knowledge into smaller ones

NAS: designing efficient models in an automatic way
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Quantization:

« https://arxiv.org/pdf/1806.08342.pdf

« https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2004.09602

Pruning:
« https://arxiv.org/abs/2102.00554
« https://arxiv.org/abs/2007.00864

KD:
 https://arxiv.org/pdf/2004.05937.pdf

NAS:

« https://www.automl.org/automl/literature-on-neural-architecture-search/
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